Webinar - Ankündigung:

am 14. Oktober 2025, wird ein Webinar zum Thema - MATLAB Grader und seine Intergration in ILIAS - stattfinden: hier geht´s zur Anmeldung.

2310543 – Compressed Sensing and Approximate Message Passing: Theory and Applications

This course covers compressed sensing (CS) and approximate message passing (AMP), two powerful frameworks at the intersection of signal processing, statistical inference, and optimization. Starting from the fundamentals of sparse signal recovery, the course introduces students to key concepts in high-dimensional statistics, signal processing and Bayesian inference that underlie CS and AMP. Special attention will be given to the AMP algorithm and its variants, which provide an iterative solution to a wide set of linear inverse problems. Topics include: Sparsity and underdetermined linear systems, Convex and greedy recovery algorithms (e.g., Basis Pursuit, Orthogonal Matching Pursuit), Introduction to high-dimensional probability and random matrices, Approximate message passing, Bayesian CS and inference in graphical models, Applications in imaging, communications, and machine learning.

Allgemeine Informationen

Wichtige Informationen
Lecture time:
Friday 11:30
---
Place:
30.96 Seminarraum 104 (1. OG)
Kursprogramm
This course covers compressed sensing (CS) and approximate message passing (AMP), two powerful frameworks at the inter-section of signal processing, statistical inference, and optimization. Starting from the fundamentals of sparse signal recovery, the course introduces students to key concepts in high-dimensional statistics, signal processing and Bayesian inference that underlie CS and AMP. Special attention will be given to the AMP algorithm and its variants, which provide an iterative solution to a wide set of linear inverse problems.

Topics include: Sparsity and underdetermined linear systems, Convex and greedy recovery algorithms (e.g., Basis Pursuit, Orthogonal Matching Pursuit), Introduction to high-dimensional probability and random matrices, Approximate message passing, Bayesian CS and inference in graphical models, Applications in imaging, communications, and machine learning.
Zielgruppe
Master students in electrical engineering, communication engineering, and similar.

Veranstaltungsdaten

Dozent(en)
Dr.-Ing. Alexander Fengler
Abschluß
Master
SWS
2
Credits
3
Start
31. Okt 2025
Ende
20. Feb 2026
Veranstaltungsart
Vorlesung
Modulart
Wahlfach
Ort
30.96 Seminarraum 104 (1. OG)
Termin
Fr. 11:30 - 13:00
Zyklus
wöchtl.

Allgemein

Sprache
Englisch
Schlagwörter
compressed sensing, sparse recovery, signal processing, high-dimensional probability
Copyright
All rights reserved

Kontakt

Name
Alexander Fengler
E-Mail
fengler@kit.edu
Sprechstunde
Wednesdays: 14-15 at
Campus West 6.45, Room 203

Verfügbarkeit

Zugriff
Unbegrenzt – wenn online geschaltet
Aufnahmeverfahren
Sie können diesem Kurs direkt beitreten.
Zeitraum für Beitritte
Unbegrenzt
Veranstaltungszeitraum
31. Okt 2025 - 19. Feb 2026

Für Kursadministration freigegebene Daten

Daten des Persönlichen Profils
Anmeldename
Vorname
Nachname
E-Mail
Matrikelnummer

Zusätzliche Informationen

Objekt-ID
3630725