Stochastische Informationsverarbeitung

Die SI vermittelt die fundamentalen und formalen Grundlagen der Zustandsschätzung rund um Prädiktion und Filterung.

Allgemeine Informationen

Wichtige Informationen
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung. Prüfungsrelevant sind alle während den Vorlesungen vermittelten Inhalte (mündlich und digitale Vorlesungsmitschriebe). Zusatzinformationen aus dem Skript (zu den direkt in der Vorlesung behandelten Themen) können ebenfalls relevant sein.

Zur Vereinbarung eines Termins kontaktieren Sie bitte Frau Dr. Gambichler:
dagmar.gambichler@kit.edu CC uwe.hanebeck@kit.edu
Bitte geben Sie dabei den gewünschten Zeitraum, Ihre Matrikelnummer, Studiengang und SPO an.

Die Prüfungen finden in Geb. 50.20, Raum 148 statt.
Kursprogramm
In diesem Modul werden Modelle und Zustandsschätzer für wertediskrete und -kontinuierliche lineare sowie allgemeine Systeme behandelt. Für wertediskrete und -kontinuierliche lineare Systeme werden Prädiktion und Filterung eingeführt (HMM, Kalman Filter). Bei der Modellierung von allgemeinen statischen und dynamischen Systemen wird ausgehend von einer generativen eine probabilistische Systembeschreibung entwickelt. Unterschiedliche Arten des Rauscheinflusses (additiv, multiplikativ) sowie verschiedene Dichterepräsentationen werden untersucht. Die grundlegenden Methoden der Zustandsschätzung für allgemeine Systeme sowie die Herausforderungen bei der Implementierung generischer Schätzer werden vorgestellt. Die Vorlesung schließt mit einem Ausblick auf den Stand der Forschung und neuartige Schätzer.

Zusammenfassung

Die SI vermittelt die fundamentalen und formalen Grundlagen der Zustandsschätzung rund um Prädiktion und Filterung.

Allgemein

Sprache
Deutsch
Copyright
This work has all rights reserved by the owner.

Kontakt

Name
Prof. Dr.-Ing. Uwe Hanebeck, Daniel Frisch

Verfügbarkeit

Zugriff
Unbegrenzt – wenn online geschaltet
Aufnahmeverfahren
Sie können diesem Kurs direkt beitreten.
Zeitraum für Beitritte
Unbegrenzt

Für Kursadministratoren freigegebene Daten

Daten des Persönlichen Profils
Anmeldename
Vorname
Nachname
E-Mail
Matrikelnummer

Zusätzliche Informationen

Objekt-ID
1758856